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Abstract. New types of thermoelectric effects occurring in semiconducting point contacts 
whose dimensions are smaller than the inelastic electron and phonon relaxation lengths are 
analysed. Among them are the reduction of thermoelectric electromotive iorce in the point 
contact relative to the bulkmaterial, making possible the determination ofthe phonon-drag 
contribution to the Seebeck coefficient. the heat release asymmetry in the banks of the 
contact, and hot-spot formation in the area of current concentration. These effects are of 
interest in an investigation ofrelaxation mechanisms insemiconductors aswell as instudying 
possible new phenomena omrring in high-level integration electronic microcircuits. 

1. Introduction 

The tendency to miniaturization of electronic devices, which has stimulated progress in 
microelectronics, has led to the advent of very-large-scale integration devices whose 
elements have linear dimensions approaching lo-’ cm. If such microcircuitsrepresenting 
various types of electric contacts operate at liquid-nitrogen temperature ( T <  100 K), 
their geometric dimensions can become comparable to or even smaller than charac- 
teristic electron and phonon scattering lengths in semiconductors on which the majority 
of microcircuit elements are based. The thermoelectric effects arising in such contacts, 
i.e point contacts between the non-degenerate semiconductors, are the object of our 
study. 

The kinetic phenomena are drastically modified in point contacts as compared to 
bulk conductors. Since the applied voltage gradient is concentrated in the vicinity of the 
constriction (at a distance of the order of the contact diameter d ,  which is supposed to 
besmaller than the inelasticmean free pathoftheelectron, /e), it resultsin the appearance 
of a non-equilibrium distribution of electrons. In metallic contacts, the analysis of 
corresponding non-linearities in the current-voltage characteristic (on which point- 
contact spectroscopy [14] is based) permits an investigation of quasi-particle excitations 
(e.g. phonons interacting with electrons). The same method of point-contact 
spectroscopy has also recently been extended to degenerate semiconductors [5 ,6] .  
Another area of non-equilibrium phenomena in point contacts is opened on applying a 
temperature difference, AT = T, - T I ,  to the contact. Thermoelectric effects in point 
contacts are peculiar due to a strong non-equilibrium distribution of phonons [7] inter- 
acting with non-equilibrium electrons. 
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Figure 1. Thermoelectric circuit incorporating 
point contact ( P C ) .  Bothsides ofthe contact areof 
similar material but neverlhelessa thermoelectric 
voltage appears in the circuit. 

Figure 2. The model of the contact as ‘an orifice 
in a screen’. 2 is a thin sheet impenetrable to 
electrons and phonons. Q(r)  is the solid angle at 
which the orifice is seen from a given point 1. 

Non-equilibrium phonons dramatically influence the Seebeck and Peltier effects in 
point contacts. According to the theory of thermoelectric effects developed in [S, 91, the 
diffusion (i.e. electronic) contribution to the thermopower at low temperature is the 
same as in the bulk metal, whereas the phonon-drag contribution to the contact ther- 
mopower is suppressed. In a contact, the latter contains an extra small factor 
compared to the bulk, where Ipk is the phonon-electron relaxation length. As has been 
proved in [S, 91. this permits one to measure the absolute phonon-drag thermopower of 
a metal by use of a circuit incorporating a point contact between similar metallic 
electrodes (figure 1). Measurement of the Seebeck coefficient in metallic point contacts 
[lo] appeared to be in reasonable agreement with the above theory [8,9]. 

Along with the Seebeck effect, the homogeneous metallic configuration incor- 
porating point contact displays the Peltier effect manifesting itself in asymmetric heat 
release in the contact banks [9]. The latter effect has also been observed experimentally 

Experimental investigations of point-contaet thermoelectric effects in conductors 
other than metals have been made using contacts based on a non-degenerate semi- 
conductor,e.g. n-typeSi, p-typeSiandn-typeGaAs[ 12-14]. Previously some interesting 
thermoelectric investigations of another type of semiconducting microstructure were 
reported [15-17). Semiconducting contacts require specific theoretical consideration as 
many approximations valid for metals are not justified there; e.g. the electronic mean 
free path is energy-dependent, which influences contact thermopower; in some cases 
charge neutrality and classical approximation (d * A ,  where I is the de Broglie wave- 
length) are violated, etc. 

This paper presents a theory accounting for the thermoelectricity in semiconducting 
point contacts. The general equations describing the kinetics of the contact are given in 
section 2. In section 3, thermoelectric coefficients are calculated in the ballistic limit, 
li & d, where I ,  is the electron-impurity elastic scattering length. Unlike in metallic 
contacts, the electronic contribution to the thermopower differs from the appropriate 
value corresponding to the bulk semiconductor. In the diffusive regime (6,< d,  these 
quantities are equal, and therefore in the circuit of figure 1 they cancel each other. 
Section 4 is devoted to the analysis of the phonon-drag thermopower in semiconducting 
point contacts. This contribution is suppressed, with respzct to the bulk, in the ballistic 

1111. 
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cased Q The effect of an asymmetric heat release in semiconductingpoint contacts 
is analysed in section 5. As is shown in section 6 ,  the heat asymmetry decreases as the 
hot-carriers regime in the contact sets in. The final section deals with the thermoelectric 
effects in two-dimensional point contacts. 

2. Basic equations 

The nature of thermoelectric phenomena in point contacts of non-degenerate semi- 
conductors depends upon the relation between the contact dimension and the charac- 
teristic electron and phonon scattering lengths. We assume that the contact diameter d 
is large compared to the de Broglie wavelength A B  and the Debye screening radius r,, 
and, on the other hand, that d is small compared to the inelastic electron and phonon 
relaxation lengths I. and Iph: 

AB, ID Q d * le ,  I,,. (1) 

With these conditions obeyed, we can neglect surface phenomena in semiconductors, 
e.g. band bending. 

The inelastic electron relaxation length I ,  depends upon the electric field in the 
contact, i.e. is determined by the current-carrying regime. It coincides with the electron 
scattering length I,,, in the ballistic regime (d Q I , ) ,  and equals (Iil,ph)i/2 in the diffusive 
regime (d + li). Note that at T -  100 K and at the carrier concentration n - l O I 7  ~ m - ~ ,  
the condition (1) is obeyed for contact diameters d - 

An orifice of diameter d i n  a screen impenetrable to electrons and phonons (see 
figure 2) is commonly used as a model of the point contact [4]. The bulk banks of the 
contact to which the current leads are attached and potential difference Vis applied are 
assumed tobe maintainedat different temperatures, T I  and T2,  respectively. The specific 
feature of the kinetic regimes considered is the appearance of strongly non-equilibrium 
electrons and phonons with different effective temperatures. 

The kinetic equations in the contact include an equation for the electron distribution 
functionf, allowing for both elastic and inelastic scattering 

cm. 

U af,lar + eE af,lap - ILVp) = l e -ph( fp ,  N ; )  (2) 

U* d N , /  a r=O.  (3) 

and an equation for the phonon distribution function N ;  

Hereu = ae/apandu' = B aw*/aqare theelectron andphonondrift velocities, respect- 
ively. The electron-impurity li(. . .) and electron-phonon &(. . .) collision integrals in 
equation (2) are of standard form. The electric field equalsE = - V@(r), where @ obeys 
the boundary condition @ ( r +  m) = (V/2) sgn z, and V is the voltage applied to the 
contact. @(r) is found from the electrical neutrality condition. 

Far from the contact, the electron and phonon distribution functions approach their 
equilibrium values 

f,(r+ m7 > 0) = - PIYTII f,(- m3 < 0) = n d E P  - P ~ ) / T ~ I  (4) 
N;(r -  m, z > 0) = n,(hw;/T,) (5) N;(r+ m, z < 0) = np(ho,"/T2)  

where nB(x)  = exp(-x) and np(x)  = l/[exp(x) - 11 are the equilibrium Boltzmann and 
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Planck functions, respectively. The temperature dependence of the chemical potential 
p in a doped semiconductor is (e.g. see [18]) 

E N Bogachek et a1 

p = ~ i n [ 4 ~ ~ h ~ n / ( 2 ~ r m ~ ) ~ / ’ ] .  (6) 

n =  d2pn,l,,o (7) 

The electriccurrent Iand the entropy flux rI are calculated according to the relations 

I =  Idzpi,l,-O I 

j = Ze(2nh)” I d’p u@)fp 

1 r = 2 ( 2 ~ & ) - ~ ~ d ~ p u @ ) ( l  -Infp)fr (9) 

where integrals are taken over the orifice of the contact. Charge and entropy flux 
densities are 

(8) 

3. Thermoelectric coefficients of a point contact in the elastic scattering approximation 

We start with a consideration of elastic scattering. Assuming that fcph = 0 in equation 
(2). the electron and phonon distributions can be represented as 

fj”’(r) = ap(r)nB((cp + e@ - ev/2 - c(,)/T,)  

+ [I - a p ( r ) ] d ( ~ p  + e@ + ev/2 - ~ z ) / T z )  (10) 

(11) n.$O)(r) = b e 4 & n d h ~ ~ / T 1 )  + [1 - b . ~ d r ) l n d ~ w ; / T d  
where ap(r)(bu(ql(r)) are, similarly to [9 ] ,  the probabilities that an electron (phonon) 
with momentump(q) arrives at thegiven point rfrom the right-hand sideof thecontact. 
We further assume that the following condition holds 

lev/, IATI 4 T1.2, Ic(1.21 (12) 
at which the electron and phonon trajectories can be considered as straight lines. In the 
ballistic regime, we have ap(r) = p.(r) = 1 for the velocity U(U) within the solid angle 
Q(r)  at which the contact orifice is seen from the point r (figure 2), whereas for the rest 
of directions these quantities are equal to zero, cp = fin = 0. 

Taking into consideration equation (12). we obtain in the case of arbitrary impurity 
concentration an equation for the function a(r) 

U aap(r)/Jr = [,(ap) (13) 
with the boundaryconditionap(r+ =) = o(r) .  Asimilarequation holdsforthe function 
P h ) .  

In the diffusive regime, equation (13) is solved to give 

and 
qu = (1/n) tan-’[2r2d-2 - 1 + 2[(r*d-2 - + ~ ~ d - ~ ] ’ / ~ } - ’ / ~ .  (15) 
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In the linear approximation in V, AT, the expressions for the elastic components of 
the current I (o)  and the electron heat flow Q ( O )  can he written as 

I(” = -(I.’*/RV) + KAT (16) 

Q‘” -TKV* f AT/RT (17) 

where V* = V + ( p ,  - p2)/e. RV is the electrical resistance of the contact. The value of 
RT is related to the thermal resistance RT according to the formula 

(R’T)-L = (RT)-I - TRVK2, 

Note that at small AT the relation Q@) = holds. The fact that the expressions 
for I (”)  and Q(O) involve the same thermoelectric coefficient K follows from Onsager’s 
principle. 

The kineticcoefficients describing the current and heat flow have different forms in 
the ballistic and diffusive regimes. In the ballistic case (4 S d) we have 

Rg = (h’fi3/e2mST) exp(-p/T) (18) 

RL = (nZfi3/mST2) exp(-p/T) (19) 

K = (emST/2nZh3)(2 - p/T)  exp(-p/T) (20) 

where S = nd2/4 is the contact area. The relation Rv/RT = 2T/e2 ensures the appli- 
cability of the Wiedemann-Franz law for the relation between electrical and thermal 
resistances of the contact. Besides, the substitution of the chemical potential (7) into 
equations (18) and (19) supports the validity of Sharvin’s formula for a semiconducting 
contact (the latter says RX - //OS and RL - l / K S ,  where uand K are the electrical and 
thermal conductivities, respectively). 

The electronic component of the thermoelectric power for a point contact equals 

Si = (2 - p/T)/e. (21) 
In the diffusion regime (/i< d) ,  the kinetic coefficients of the contact are expressed 

as 

R 6  = [ e 2 / ( .  + B)T]Rx 

KD = [ ( r  + 1 - p/T)/e2]Rx 

Sb = ( r  + % - p/T)/e 

where r determines the energy dependence of the elastic electron relaxation time 
according to 5, =A,&’, and r(x) is Euler’s gamma function. We have taken into con- 
sideration that JdZp (dna/dr) = d. 

Note that the Wiedemann-Franz law is also obeyed in the diffusive repime. The 
substitution of the appropriate relaxation time into equation (22) leads to the Maxwell 
formula, RV = l/ud. 

The thermopower in the diffusive regime coincides with that in the ballistic regime 
at the value of relaxation time exponent r = -&, which corresponds to the energy- 
independent electron mean free path. This situation is realizable in metals whereas 
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in doped semiconductors electron scattering by ionized impurities dominates, which 
corresponds t o r  = # [HI. 

The thermopower obtained from equations (21) and (25) should be compared with 
that for the bulk semiconductor S i  = (i- + 8 + p / T ) / e  [18]. The contact thermopower 
coincides with the latter quantity in the diffusive regime under the condition that elastic 
scattering is dominant, 

In the ballistic limit, the coincidence of thermopower in the contact and in the bulk 
[SI is realizable when scattering of electrons by acoustic phonons ( r  = -k), in the bulk, 
dominates[ 181. Therefore, thestudy of thermoelectriceffectsin point contactsprovides 
information on the mechanisms of electron scattering. 

E N Bogachek et ai  

4. Phonon-drag effects 

The small size of a point contact compared to the inelastic electron scattering length 
(d Q 1,)permitsus tofind theinelasticcorrectionfjl' to theelectrondistribution function 
fp  (in thecase of elastic electronscattering) by perturbatively consideringtheelectron- 
phonon collision integral I,,,. In what follows our interest will be concentrated on the 
inelastic component I(') of the point-contact current, which will be calculated with the 
help of a technique originally developed for metallic point contacts and described 
elsewhere [19]. With arbitrary (Fermi or Boltzmann) statistics for conduction electrons, 
1'') can expressed in the form 

where we have taken intoconsideration thecondition that the energy hwP-,. - u(mEp)' /2 
of a phonon participating in electron scattering is small compared to the electron energy 
zP - T. Thedimensionlesssmallparametercorrespondingtothisinequalityis(uZm/T)'/2 
= (Ts/T)1!2Q 1, where T, = muL - 1 K, The value of f(I) is calculated in the small- 
voltage limit leVl Q T,  which corresponds to the thermal EMF calculated at AT QT. This 
permits us to neglect the trajectory bending, in the calculation of probability factor ab(') 
entering equation (26). Considering the case T S  Ts and using the expression 
W; = nh'p2/9aMmw; [l8] for thesquareofthematrixelement of theelectron-phonon 
interaction, we obtain in the ballistic regime 

l B ( V ,  AT) = $(V*, AT)[1 - ( 4 / 3 ~ ) ( d / / , + ~ J ]  

- 0.6611p'(V. O ) ( A ~ ' e V ) ( T s / T ) ' / 2 ( ~ / i ~ ~ ~ ) .  (27) 
The quantity I:) can be found from equations (16), (18) and (20); I,,, is the length 

of quasi-elastic electron scattering by acoustic phonons, lcph - 1/W 

I,,, = (9n/4)(h4Mu2/a3m2 T E : )  E, = (h2/zma2).  

In the diffusive regime (/,e d) ,  the inelastic contribution to the current is almost 
independent of the parameters of elastic electron scattering. We have in this case 

lD(V,  A T )  = f',O'(V*, AV(1 - d/ieac) + (AT/eR~)(Ts/T)'~(d/l,,,)cD (28) 
where cD - 1. This expression permits estimation of the phonon-drag thermopower in 
the contact. 
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Figure 3. Dependence of thermoelectric mef- 
ficient of the point contact S, upon its diameter d 
(schematic). S, is the thermo-EhlF coefficient for 
abulksemiconductor,andl,,isthephonon mean 
free path. 

Figure4. Schematic of the heat transfer in a point 
contact. S.,isthe effective boundaryof the inelas- 
tic relaxation zone. 

In the ballistic and diffusive regimes, equations (27) and (28) give us 

Sgh = 0.66(Ts/T)1"d/el,Qh (29) 

skh = CD(T)(Ts/T)1'2d/el,ph (30) 

and 

respectively. The role of scattering mechanisms shows up as a variation of the coefficient 
cD of the order of unity. 

In bulk semiconductors, taking into account both phonon-electron and other mech- 
anismsofphononscatteringcharacterized byrelaxationlengthslphh-eand I;,,, thephonon- 
drag thermopower can be expressed as (e.g. see [IS]) 

where rph,= l Q h / ~  and 1;; = l& + I:;' is the total phonon scattering length. 

the factor d/lQh 

where 'pc' stands for the point-contact and 'm' for the bulk. For phonon-electron 
scattering alone 

SLh = (Ts/T)(rph/ere-ph) = ( l Q h / e l e - p h ) ( T S / o l p  (31) 

Equations (29) and (30) differ from the corresponding expressions for the bulk in 

S$ = (d / lph)Sc  (32) 

s$ (d/lph-e)sih.  (33) 
Equations (32) and (33) suggest that, in the semiconducting point contact, the 

phonon-drag contribution to the thermopower is suppressed compared to that in the 
bulk. Similar effects have been observed in metallic point contacts [lo]. 

The difference between the thermopower in point contacts and in bulk conductors 
results in the appearance of a non-zero Seebeck voltage in a homogeneous semi- 
conducting circuit incorporating a point contact (figure 1). The linear dependence of the 
differential phonon-drag thermopower S$' on the contact diameter d persists until the 
inequality d lQh holds. With a further increase of the contact diameter, S$ saturates 
at the value corresponding to the phonon-drag thermopower of a bulk semiconductor. 
The dependence of Sg on the contact diameter is shown schematically in figure 3. The 
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size effect in the phonon drag of a semiconducting point contact has been observed 
experimentally [13, 141. Note the difference between this effect and the known size 
reduction of phonon drag in wires due to surface phonon scattering [ZO]. 

5. Heat production asymmetry in point contacts 

In studying the heat productionin semiconductingpoint contacts,Trzcinskiaa1[13,14] 
found that the heat flow Q,  released in the contact bankcorresponding to moreenergetic 
electrons exceeds the heat flow Q- of the bank whose electrons are slowed by the electric 
field. At the same time, the total heat production in the contact Q = Q ,  t Q- is 
described by the standard expression Q = IR. The point-contact heat flow asymmetry 
Q, is determined by 

According to the results obtained for silicon point contacts 1131, the ratio Q./Q may be 
as high as 0.3. A similar effect has been observed in a copper point contact [ll]. The 
general theory of thermoelectric phenomena in point contacts taking into consideration 
both electron and phonon heat transport has been developed in [9]. 

For a non-degenerate electron gas, the heat production asymmetry in the point 
contact has two components: the electronic one, Q:’, resulting from the electron accel- 
eration in the electric field, and the phonon part, Qp”, corresponding to the anisotropic 
generation of non-equilibrium phonons. 

For metals, Q:’ is estimated as Q:‘ - (eV/E,)Q 4 Q ,  i.e. much less than the total 
heat dissipation, IR. In a low-density electron gas, the condition IeVJ B Ipl, Tleads to 
predomination of the electronic mechanism of asymmetry. Our aim is to calculate Q:’ 
for a semiconducting point contact. 

The heat production rates Q ,  in the bulk banksof a point contact can be calculated 
as heat flows through the surfaces S, and S- embracing the contact regions in which 
inelastic electron and phonon relaxation take place (figure 4). If the surfaces S, and S- 
are moved o f f  the contact up to distances R exceeding the inelastic relaxation lengths 
R B 4, lPh, the heat Rows Q ,  and Q- become independent of the shape of S, and S-. 
Since the drop of the potential applied to the contact occurs at characteristic distances 
of the order of the contact diameter d ,  the potential @(r)  will reach its limiting values 
@* = &V/2 at the surfaces S,, 

In the bulk banks of the contact, electrons and phonons are almost at equilibrium. 
Therefore, the heat flow can be calculated using thermodynamicconsiderations. Taking 
into consideration the above values of the potential Q at Sf, we obtain 

Q ,  = I dS, W - Ip(T, ) /e  - lV l2  

Q-  = 1 dS- W + lp(T2)/e - IV/Z 
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Here, W(r)  is the total energy flow density at a given point r. In the stationary situation 
considered here, energy density is time-independent and hence W obeys the condition 

div W = 0. 

Assuming that the total energy flow is localized within the point-contact crosssection, 
we obtain the following expression for Q?: 

Q, = * I dSo W, F l p ( T , , 2 ) / e  - IV/2 

W, = (bfi)-’ I d3p (2v@)[cP + e@(r)]fp + r5 u;w;N;) .  (37) 

The total heat production 2= in the contact sides is found by taking into account the 

E- = Q- + QF 

(36) 

where W, is the energy flux density at z = 0, 

n 

heat flow Q, through the point contact: 

E+ = Q +  - Qp 

Taking into consideration only the electronic part of Q, (see equation (9)), we obtain 

Q, = 1 dSa W$ - Ico’pc/e - (1(’)1//2) coth(eV/ZT). 

The relative total heat production asymmetry is 

A = (2+ - 2-)/(2+ + 2-) = L(lelV/ZT) (353) 
where L(x) = coth(x) - 1/x is the Langevin function. At lev1 < Twe obtain A = IeIV/ 
6T. If the condition lev1 < Tis  violated, the total heat production asymmetry stops 
increasing linearly with V and saturates at lev/ B T .  giving A = sgn( V ) .  

At [eVl< T ,  the electroniccomponent of the heat Bow in the contact bank is of the 
same order of magnitude as the phonon part since 

Q’,l/QP - (levl/r)(Ts/T). 
However, at lev1 B T the value of the heat flow asymmetry Q, is mainly determined 
by the electron contribution. In this case the relatively small temperature difference 
between the contact banks may be disregarded. Since for the non-degenerate semi- 
conductors ( E ~ ) ,  lpl - T ,  the condition lev1 B Trequires (unlike in previous cases) that 
in the calculation of the probability functions eJr) (see equation (11)) the trajectory 
distortion by the contact electric field should be taken into account. 

Let @,(r) denote the value of the potential at the orifice of the contact. Under the 
condition + eQPc < eV/2 the electron is unable to reach the orifice from the right half- 
space. Therefore, in this case olp(z = 0) = 0. If, on the contrary, E~ + eap,  < -eV/2, 
the electron cannot come to the same point from the left half-space and therefore 
ep(z = 0) = 1. The general form of the function which follows from the above 
consideration is 

olp(r, V )  = O(cp + e@(r) - eV/Z]{l - vp(r, V)O[cP + e@(r) + eV/Z]} (39) 
where O(x) is the Heaviside step function. The quantity qJr, V )  in equation (39) falls 
within the limits 0 S =z 1. At lev[ B T the calculation of the explicit form of this 
function is not necessary. As follows from equation (39), the non-zero contributions to 



8886 

the current and heat flow will correspond only to those regions of momentum space in 
which the condition cp + eo, 3 eV/2 is satisfied. 

The general expression for the current, in the absence of inelastic scattering, is, 
according to equations (8), (10) and (39), 

E N Bogachek et a1 

1") = (e/2n3h3m) exp(p/T) sinh(eV/27')Fl (V) (40) 

where 

F I ( V ) =  dSo d3pp,mp(r, V ) e x p { - [ ~ ~ + e o ( r ) ] / ~ ~ ( & ~ + e o ~ ~ )  -eV/2). (41) I f  
Inthecaselev/ TthequantityF, doesnotdependon VandequalsF, = -2nS(mT)*. A 
detailedanalysisof theI-Vcharacteristicand thecalculationofthe potential distribution 
@')(r) in a semiconducting point contact is given in [21]. 

The electron component of the energy flow through the point contact can be pre- 
sented in the form 

dSo W$ = (2n*h3m)-' exp(p/T) sinh(eV/2T)F2(V) (42) 

where 

F 2 ( V )  = Idsu fd3ppz(cp  + e @ ( o ) ) ~ p ( r .  V) 

x exp{-[&, + e@"'(r)]/T}@(c, + e@(" - eV/2). (43) 
The comparison between the dependences F,(V) and F2(V)  in the limit lev] ?a T 

results in the relation 

F 2 ( V )  = (eV/2)FI(V)[1 - O(T/eV)] (44) 
where O(x) -+ 0 at x --f 0. According to equation (44). the maximal value of the energy 
flow through the orifice of the point contact is 

J dSo W $  = 81'n)Vsgn(eV). (45) 

Taking into account equation (37), we obtain the expression for the heat flow in the 
contact banks as (lev1 ?a r)  

Q ,  = - I f ( ' ) ~ I  T sgn(eV)] T I(')p/e. (46) 
Taking into consideration the condition lev1 ?a lpl, which is valid at high voltages, 

and using equation (46). we arrive at the conclusion that the limit value of heat flow 
asymmetry can be as high as unity:~ ~~~ ~~~~~~~~ ~ ~~ 

QdQ = (Qt  - Q-)/(Qt + Q - )  = -spn(eV). (47) 
Note that according to equations (44) and (47) the limit heat flow asymmetry is 

independent of the mechanism of elastic electron scattering as the impurity con- 
centration does not enter into the expression (46). However. this is justified only in the 
case of weak inelastic scattering (d 4 le) .  In a dirty contact (lie d) ,  the condition = 
( l J ~ , , h ) 1 i 2  < d holds, owing to which the heat release asymmetry amounts to the value 
given by equation (47). The reduction of the relative asymmetry Q,/Q at increasing 
contact size was observed in [ 12,141. 
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The temperatures of the contact banks T, depend on the heat flows Qr and on the 
conditions of beat removal from the banks. To estimate the bank temperature, we 
confine ourselves to the simplest model of the contact shown in figure 2.  

The temperature can be measured at macroscopic distance R from the contact 
( R  S le,,, I,, S d) at which the contact can be considered as a point heat source. The 
heat propagation in the bulk banks is described by the equations of thermal conductivity 
with a point source of heat 

-VKVT?(r) = 2 ( Q ,  7 In,)&(r) (48) 
subject to the boundary condition corresponding to the absence of heat flow across the 
surface 2 of a contact 

zVT, /Z = 0. 

Here, K and Il, = TS, are the thermal conductivity and the Peltier coefficient of 
the bank materials, respectively. The small temperature deviation AT&) from the 
equilibrium value To corresponds to the conditions of the experiment. 

Equation (48) is solved to give 

T,(r) = To + (Qt 3 IrIm)(2Kr)-’. (49) 

Taking into account the condition /eV( % T which results in the inequality IIVI S 
IIn,l and using equation (46) we obtain 

T,(r) = Tu + hlZVl[l T sgn(eV)](hicr)-l. (50) 

As follows from the latter formula, at levi % T the asymmetric part of the tem- 
perature distribution is proportionalto V 2 .  Thisistypical forthe case ofelasticscattering. 
Taking an estimate of K valid for non-degenerate semiconductors, K = n&(T/m)l’z, and 
using the expression for the point-contact current derived in section 3, we obtain in the 
ballistic regime 

ATBIT, = IV/ToKr = (eV/To)’(d2/l,r). (51) 

ATD/To = (eV/T0)’(d/r). (52) 

In the diffusive regime, the temperature difference decreases compared to (51) in 
proportion to l,/d, which gives us 

The temperature measured at macroscopic distances from the contact is only a 
percentage deviation from the ambient temperature To [12,14]. Note, however, that at 
the minimal distance at which the notion of temperature is sensible ( R  3 le,,, lph) the 
estimates following from equations (51) and (52) give a magnitude of AT as high as 
ambient temperature To. 

6. Heat production asymmetry in the ‘hot-spot’ regime 

In the metallic point contacts, the heat release asymmetry is negligible in the case of 
strong electron-phonon scattering (le< d), as has been discussed above [22]. Contrary 
to this, in a semiconducting contact the heat asymmetry is prominent, and at sufficiently 
large voltage the regime of hot electrons sets in. We suppose that the main source of 
electron scattering is that by the acoustic phonons (I = lac). Electron heating in this case 
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corresponds to the electric field in the contact of the order of Eo = (6TsT)il*(e1ac)-1 [23]. 
At the electronic mean free path 1, of the order of 10-6cm (appropriate to room 
temperature) and Ts of the order of 1 K this gives an estimate Eo - lo3 Vcm-I. In 
experiments [12-141 contact diameter d was estimated as d -  101, at voltage 
V - 10’ mV. This corresponds to the value of the electric field Ein the contact area of 
order of 104Vcm-’. Therefore, the hot-spot does appear in the near vicinity of the 
contact. 

The electronic energy flux in the constriction of the point contact can be estimated 
at E 9 Ee as 

E N Bogachek et a1 

W = I(V)(8/n)11Z[TE(V)/eEe]. (53) 

(54) 

According to equation (37), the heat production asymmetry will be in this case 

Y =  (Q+ - Q - ) / ( Q +  + Q - )  = w/IN = (8/n)”’(T/leV/)[E(V)/EoI. 
In the approximation considered, the average kinetic energy of a hot electron equals 

( E )  = cTE/Eo, resulting in the heat release asymmetry 

Y = ( 8 / ~ ) ’ ~ ( ~ ) / c l f V l  c-1. (55) 

Y = 2(T/3nTS)’p1, , [E(V)/E~].  (56) 

Y = (T/T,)‘”I,/d. (57) 

Substitution of the above expression into equation (54) gives 

As the contact field is estimated as EV/d we find 

According to this equation the heat flow asymmetry, at small Knudsen number K = 
(lac/d) 4 1, is proportional to Kin accord with [l2] and [14]. 

I. Ballistic kinetic phenomena in two-dimensional contacts 

The analysis conducted so far has been concerned with the case when the geometrical 
dimension of the contact exceeded the de Broglie wavelength of the electron. Recent 
progress in the technology of heterojunction fabrication has resulted in the advent 
of two-dimensional point contacts of controlled geometry [24, 251. These are shown 
schematically in figure 5. The two-dimensional nature of the current distribution in such 
contactsis responsible for their specific kineticproperties, which differ significantly from 
those corresponding to three-dimensional contacts. Confining our consideration to 
elastic scattering (Icph(. . .) = 0). we obtain the following expression for the current (in 
the case of degenerate electron statistics) 

I(O) = (e2/d)(kFd/n) [V” + (n2/6e) (TAT/p) ] .  (58) 
Here kFis the Fermi wavevector. According to equation (58), the diffusive (electronic) 
component of the thermopower equals 

S; = szT/6ep. (59) 
Note a factor kdincrease in the two-dimensional point-contact resistance compared 

to the three-dimensional contact, and a numerical factor Zdecrease in the thermopower 
[91. 
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Figure 5. Two-dimensional point contact. y(r )  is 
theangleatwhichtheorificeisseenfrom the point 
,. 

Figure 6. Equivalent scheme k r  the thermo- 
electric effects in the point contact. M and M’ are 
the bulk banks, and M ,  the’ballisticelement’. At 
the boundary B ,  of the ballistic zone the heat is 
released as a result of relaxation of hot electrons. 
whereas at the boundary B. the heat isabsorbed. 
The thermoelectric voltage in the circuit is 
induced due to the difference between the 
Ihermo-EMF of the ballistic element and that of 
the bulk. 

The electric potential distribution in the contact is similar to that of [ I ]  

@(r)  = (V/2)[1 - y(r)/n]sgn z (60) 
where y(r) is the angle at which the orifice is seen from the point r .  

In the case of non-degenerate electron statistics, the expressions for the current, 
equation (58), and the thermopower, equation (59),  of a two-dimensional point contact 
are modified as follows: 

I ( O )  = (42n2fi3) (2xmT)”* exp(p/T)[ev* + A T ( ~ / T  - f)] (61) 

(62) Sic = (4 - p / T ) / e .  
The difference in the kinetic coefficients of point contacts of lower dimensions 

suggests the existence of a transverse size effect setting in when the thickness becomes 
comparable to or less than the de Broglie wavelength of conduction electrons. 

8. Conclusions 

Ifthecontact dimensiondissmaller than the lengthsofthe inelasticelectronandphonon 
scattering, the electron distribution in the contact transforms to a specific form that 
cannot be described as the conventional current-carrying drift state ofpu(Jfo/Je) type. 
The electron distribution function f(p, r) should be calculated in this case according to  
the scheme proposed in section 3 introducing the probabilities of electron and phonon 
arrival near the contact from the contact banks. The electron-phonon interaction in the 
near vicinity of the contact described by the electron-phonon, and phonon- 
electron, Iph+, collision integrals results in non-linear corrections to the kinetic coef- 
ficients. 
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Under the assumption of elastic electron scattering, the size effect of the contact is 
controlled by the parameter d/Z,, where 1, is the electron-impurity scattering length. In 
the diffusive regime (d > l,), the electrical (Rv) and thermal (Rq resistances as well as 
the electronic component of the thermopower (S&) coincide with those quantities 
appropriate for bulk semiconductors. In the ballistic regime corresponding to contact 
diameter smaller than the mean free path (d < 1,). the contact diameter itself plays the 
role of the scattering length, which results in Sharvin's formula for the resistance. The 
temperature dependence of the quantities RV, RTand S; is therefore determined by the 
energy-independent scattering length. 

The allowance for the weak electron-phonon interaction in the contact results in an 
additive component of the resistance proportional to the small parameter d/le-ph. The 
point-contact spectroscopy of phonons in metals and degenerate semiconductors [MI 
is one of the consequences of this contribution, which is non-linear with respect to the 
voltage V applied to the contact. In a non-degenerate semiconductor, the inelastic 
component of the resistance provides less detailed information concerning the phonon 
spectrum since the energy distribution of conduction electrons has no sharp edge. 

In a non-degenerate semiconductor, a pronounced size effect occurs at d 4 IEph. 
Iph+. This involves a d/lph-. times reduction in the phonon-drag thermopower of the 
point contact as compared to the bulk semiconductor. The above phenomena, including 
the difference between S$ and Sk for point-contact and bulk material, lead to the non- 
zero thermoelectric voltage in the circuit made of single material but incorporating a 
point contact. 

The heat release asymmetry in a homogeneous symmetrical point contact is another 
manifestation of the electron-phonon interaction. If the condition lev1 S T ,  1 ~ 1  is sat- 
isfied, the main part of the energy dissipated in the contact can be released in the contact 
bank with a higher potential. 

Both phenomena have beenobservedexperimentally inpoint contacts [12-141. They 
do not have their counterparts in circuits made of bulk conductors. These phenomena, 
which can naturally be referred to as ballistic Seebeck and Peltier effects, can be 
explained within the scheme representing the non-equilibrium region ofthe point contact 
as the 'ballistic element' introduced in a circuit made of similar conductors (figure 6). 
Since the dimension of the near-contact region where the electric potential and/or 
temperature gradient occurs is smaller than the relaxation length, the values of Seebeck 
and Peltier coefficients differ from those appropriate for a bulk conductor. 

In a system comprising several contacts, or a network of contacts, new features can 
arise. If the size of the bulk region separating contacts is smaller than, or of the same 
order as, the inelastic mean free path, equilibrium in the bulk will not be established, 
which in turn results in new aspects of ballistic Peltier and Seebeck effects. 

The above ballistic kinetic effects are potentially important and can manifest them- 
selves in electronic microcircuits with a super-high degree of integration corresponding 
to asingle-element size of the order of cm, especially at temperatures below liquid- 
nitrogen temperature. 
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